(b) What is Heisenberg's uncertainty principle? Give its physical significance.

Attempt any one part of the following:

 $(1 \times 5 = 5)$

- (a) Derive time independent Schrödinger wave equation for a particle. What happens if the particle is free?
- What do you mean by Compton shift? Explain that shift is not observable with visible light.

Attempt any one part of the following:

 $(1 \times 5 = 5)$

- (a) Explain briefly the different types of polarization in dielectrics.
- What is hysteresis curve? Show that the area of this curve is equal to the hysteresis loss in each cycle.

Attempt any one part of the following:

 $(1 \times 5 = 5)$

- (a) Explain the concept of displacement current. How it makes the Ampere's law to valid for non steady state?
- (b) Write down the Maxwell equations in conducting medium and use these equations to derive wave equations.

Attempt any one part of the following:

 $(1\times5=5)$

- (a) What are superconductors? Explain their classification as type I and type II superconductors.
- What are carbon nanotubes? Explain the CVD technique for its synthesization.

Physical constants:

Speed of light

 $c = 3.0 \times 10^8 \text{ m/s}$

Plank's constant

 $h = 6.62 \times 10^{-34} \text{ J-s}$

Mass of electron •

 $m = 9.1 \times 10^{-31} \text{ Kg}$ $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$

Permeability

 $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/M}$

Permittivity

(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID: 9611 Roll No.

B. Tech.

(SEM. II) THEORY EXAMINATION 2010-11 **ENGG. PHYSICS-II**

Time: 2 Hours

Total Marks: 50

Note: Attempt all questions.

SECTION-A

- Attempt all parts. All parts carry equal marks.
 - (a) If the momentum of a particle is increased to four times, then the de-Broglie wavelength will become:
 - Twice

(ii) Four Times

Half

- (iv) One-fourth.
- The Compton shift depends on:
 - Energy of incident radiation
 - Frequency of incident radiation
 - Angle of scattering
 - (iv) Material of target.
- According to uncertainty principle which of the following particle can not exist in the nucleus:
 - Electron

Proton

(iii) Neutron

(iv) Alpha-particle.

(d)	For a given dielectric,	as the temperature increases, the	
()	ionic polarizability:		
	(i) Increases		
	(ii) Decreases		
	(iii) First increases then decreases		
	(iv) Remain unchange		
(e)	• •	ature, the hysteresis loop of a	
(•)	ferroelectric material m		
	(i) Parabola	(ii) Straight line	
	(iii) Ellipse	(iv) Point.	
(f)	Magnetic field can be p		
(1)	(i) Moving charge		
	(ii) Time varying of e	ectric field	
	(iii) Current		
	(iv) All the above		
(g)		ne, per unit area transported by the	
(8)	electromagnetic fields		
	(i) $\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$	(ii) $\vec{S} = \mu_0 (\vec{E} \times \vec{B})$	
	and the second second		
	(iii) $\vec{S} = (\vec{E} \times \vec{B})$	(iv) $\vec{S} = \varepsilon_0 (\vec{E} \times \vec{B})$	
(h)	The property of the	naterial which dose not show an	
(11)		superconducting state as compared	
, 5	to normal state is:		
	(i) Entropy	(ii) Thermal conductivity	
	(iii) Volume	(iv) Specific heat	
(i)	` '	of a superconductor is highest at:	
(-)	(i) 0 K	• (ii) Transition temperature	
	(iii) Room temperatu	0.1	

- (j) Armchair, zig-zag and chiral are the classifications of:
 - (i) Buckyballs
 - (ii) Multiwalled nanotubes
 - (iii) Doublewalled nanotubes
 - (iv) Singlewalled nanotubes

SECTION-B

- 2. Attempt any three parts of the following: $(3\times5=15)$
 - (a) Calculate the wavelength of an electron that has been accelerated in a particle accelerator through a potential difference of 100 volt.
 - (b) A beam of gamma radiation having photon energy 510 keV is incident on an aluminium foil. Calculate the wavelength of scattered radiation at 90°.
 - (c) If a NaCl crystal is subjected to an electric field of 1500 V/m and the resulting polarization is $4.3 \times 10^{-8} \text{ C/m}^2$, calculate the relative permittivity of NaCl.
 - (d) If the upper atmospheric layer of earth receives 1360 W m⁻² energy from the sun, what will be the peak values of electric and magnetic fields at the layer?
 - (e) A superconducting Lead has a critical temperature of 6.2 K at zero magnetic fields and a critical field of 0.0306 Tesla at 0 K. Determine the critical field at 3.1 K.

SECTION—C

Note: Attempt all questions of this Section. All questions carry equal marks.

- 3. Attempt any one part of the following: (1×5=5)
 - (a) Derive the de-Broglie wavelength of a particle as function of temperature.

3

2